Ultrastructural and biochemical aspects of matrix vesicle-mediated mineralization

نویسندگان

  • Tomoka Hasegawa
  • Tomomaya Yamamoto
  • Erika Tsuchiya
  • Hiromi Hongo
  • Kanako Tsuboi
  • Ai Kudo
  • Miki Abe
  • Taiji Yoshida
  • Tomoya Nagai
  • Naznin Khadiza
  • Ayako Yokoyama
  • Kimimitsu Oda
  • Hidehiro Ozawa
  • Paulo Henrique Luiz de Freitas
  • Minqi Li
  • Norio Amizuka
چکیده

Matrix vesicle-mediated mineralization is an orchestrated sequence of ultrastructural and biochemical events that lead to crystal nucleation and growth. The influx of phosphate ions into the matrix vesicle is mediated by several proteins such as TNAP, ENPP1, Pit1, annexin and so forth. The catalytic activity of ENPP1 generates pyrophosphate (PPi) using extracellular ATPs as a substrate, and the resultant PPi prevents crystal overgrowth. However, TNAP hydrolyzes PPi into phosphate ion monomers, which are then transported into the matrix vesicle through Pit1. Accumulation of Ca2+ and PO43- inside matrix vesicles then induces crystalline nucleation, with calcium phosphate crystals budding off radially, puncturing the matrix vesicle's membrane and finally growing out of it to form mineralized nodules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix vesicle-mediated mineralization in bone

Matrix vesicle-mediated mineralization is orchestrated by ultrastructural and biochemical events that lead to crystal nucleation and growth. Osteoblasts secrete extracellular matrix vesicles equipped with a variety of membrane transporters and enzymes, which are necessary for the initial nucleation and subsequent growth of calcium phosphate crystals. The influx of phosphate ions into the matrix...

متن کامل

Molecular mechanisms of vascular calcification: lessons learned from the aorta.

Vascular calcification increasingly afflicts our aging and dysmetabolic population. Once considered a passive process, it has emerged as an actively regulated form of calcified tissue metabolism, resembling the mineralization of endochondral and membranous bone. Executive cell types familiar to bone biologists, osteoblasts, chondrocytes, and osteoclasts, are seen in calcifying macrovascular spe...

متن کامل

Regulated Production of Mineralization-competent Matrix Vesicles in Hypertrophic Chondrocytes

Matrix vesicles have a critical role in the initiation of mineral deposition in skeletal tissues, but the ways in which they exert this key function remain poorly understood. This issue is made even more intriguing by the fact that matrix vesicles are also present in nonmineralizing tissues. Thus, we tested the novel hypothesis that matrix vesicles produced and released by mineralizing cells ar...

متن کامل

What triggers cell-mediated mineralization?

Mineralization is an essential requirement for normal skeletal development, but under certain pathological conditions organs like articular cartilage and cardiovascular tissue are prone to unwanted mineralization. Recent findings suggest that the mechanisms regulating skeletal mineralization may be similar to those regulating pathological mineralization. In general, three forms of cell-mediated...

متن کامل

Matrix vesicle enzyme activity in endosteal bone following implantation of bonding and non-bonding implant materials.

The effect of bone bonding (KGy-Cera) and non-bone bonding (KGy-213) implant materials on primary mineralization was examined in endosteal bone repair following marrow ablation. Comparisons were made to determine implant effect on concentration and biochemical parameters of matrix vesicles, as contrasted to vesicles in normal bone healing. Matrix vesicle number was determined by high-resolution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2017